Data-Mining Methodology to Improve the Scientific Production Quality in Turkey Meat and Carcass Characterization Studies

Author:

Salgado Pardo José Ignacio1ORCID,Navas González Francisco Javier1ORCID,González Ariza Antonio2,León Jurado José Manuel2,Carolino Nuno3456ORCID,Carolino Inês347,Delgado Bermejo Juan Vicente1ORCID,Camacho Vallejo María Esperanza8

Affiliation:

1. Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain

2. Agropecuary Provincial Centre, Diputación de Córdoba, 14071 Córdoba, Spain

3. Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal

4. Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal

5. Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal

6. Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal

7. Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal

8. Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, 14004 Córdoba, Spain

Abstract

The present research aims to describe how turkey meat and carcass quality traits define the interest of the scientific community through the quality standards of journals in which studies are published. To this end, an analysis of 92 research documents addressing the study of turkey carcass and meat quality over the last 57 years was performed. Meat and carcass quality attributes were dependent variables and included traits related to carcass dressing, muscle fiber, pH, colorimetry, water-holding capacity, texture, and chemical composition. The independent variables comprised publication quality traits, including journal indexation, database, journal impact factor (JIF), quartile, publication area, and JIF percentage. For each dependent variable, a data-mining chi-squared automatic interaction detection (CHAID) decision tree was developed. Carcass or piece yield was the only variable that did not show an impact on the publication quality. Moreover, color and pH measurements taken at 72 h postmortem showed a negative impact on publication interest. On the other hand, variables including water-retaining attributes, colorimetry, pH, chemical composition, and shear force traits stood out among the quality-enhancing variables due to their low inclusion in papers, while high standards improved power.

Publisher

MDPI AG

Reference158 articles.

1. Plan for EU research funds raises ire;Rabesandratana;Science,2015

2. Bibliometric analysis of multi-language veterinary journals;Krauskopf;Transinformação,2017

3. Classifying research articles in multidisciplinary sciences journals into subject categories;Fang;KO Knowl. Organ.,2015

4. Research Output of Veterinary and Animal Sciences as Seen from the Indian Veterinary Journal;Choudhary;Libr. Waves,2017

5. An overview of animal science research 1945–2011 through science mapping analysis;Cobo;J. Anim. Breed. Genet.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3