Preserving Geo-Indistinguishability of the Emergency Scene to Predict Ambulance Response Time

Author:

Arcolezi HéberORCID,Cerna SeleneORCID,Guyeux ChristopheORCID,Couchot Jean-FrançoisORCID

Abstract

Emergency medical services (EMS) provide crucial emergency assistance and ambulatory services. One key measurement of EMS’s quality of service is their ambulances’ response time (ART), which generally refers to the period between EMS notification and the moment an ambulance arrives on the scene. Due to many victims requiring care within adequate time (e.g., cardiac arrest), improving ARTs is vital. This paper proposes to predict ARTs using machine-learning (ML) techniques, which could be used as a decision-support system by EMS to allow a dynamic selection of ambulance dispatch centers. However, one well-known predictor of ART is the location of the emergency (e.g., if it is urban or rural areas), which is sensitive data because it can reveal who received care and for which reason. Thus, we considered the ‘input perturbation’ setting in the privacy-preserving ML literature, which allows EMS to sanitize each location data independently and, hence, ML models are trained only with sanitized data. In this paper, geo-indistinguishability was applied to sanitize each emergency location data, which is a state-of-the-art formal notion based on differential privacy. To validate our proposals, we used retrospective data of an EMS in France, namely Departmental Fire and Rescue Service of Doubs, and publicly available data (e.g., weather and traffic data). As shown in the results, the sanitization of location data and the perturbation of its associated features (e.g., city, distance) had no considerable impact on predicting ARTs. With these findings, EMSs may prefer using and/or sharing sanitized datasets to avoid possible data leakages, membership inference attacks, or data reconstructions, for example.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3