Tree-Structured Model with Unbiased Variable Selection and Interaction Detection for Ranking Data

Author:

Shih Yu-Shan1,Kung Yi-Hung2

Affiliation:

1. Department of Mathematics, National Chung Cheng University, Chiayi City 621301, Taiwan

2. Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan

Abstract

In this article, we propose a tree-structured method for either complete or partial rank data that incorporates covariate information into the analysis. We use conditional independence tests based on hierarchical log-linear models for three-way contingency tables to select split variables and cut points, and apply a simple Bonferroni rule to declare whether a node worths splitting or not. Through simulations, we also demonstrate that the proposed method is unbiased and effective in selecting informative split variables. Our proposed method can be applied across various fields to provide a flexible and robust framework for analyzing rank data and understanding how various factors affect individual judgments on ranking. This can help improve the quality of products or services and assist with informed decision making.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Reference23 articles.

1. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Regression Trees, Chapman & Hall. [1st ed.].

2. Unbiased Recursive Partitioning Enables Robust and Reliable Outcome Prediction in Acute Spinal Cord Injury;Buri;J. Neurotrauma,2022

3. Classification and regression trees;Loh;Wiley Interdiscip. Rev. Data Min. Knowl. Discov.,2011

4. Normalization in TOPSIS-based approaches with data of different nature: Application to the ranking of mathematical videos;Liern;Ann. Oper. Res.,2021

5. Prediction analysis of the happiness ranking of countries based on macro level factors;Handayani;Int. J. Artif. Intell.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3