Optimal Power Flow of Integrated Renewable Energy System using a Thyristor Controlled SeriesCompensator and a Grey-Wolf Algorithm

Author:

Rambabu M.,Nagesh Kumar G. V.,Sivanagaraju S.

Abstract

Inrecent electrical power networks a number of failures due to overloading of the transmission lines, stability problems, mismatch in supply and demand, narrow scope for expanding the transmission network and other issues like global warming, environmental conditions, etc. have been noticed. In this paper, a thyristor-controlled series compensator (TCSC) is placed at the optimum position by using two indices for enhancing the power flows as well as the voltage security and power quality of the integrated system. A fusedseverity index is proposed for the optimal positionalong with a grey wolf algorithm-based optimal tuning of the TCSC for reduction of real power losses, fuel cost with valve-point effect, carbon emissions, and voltage deviation in a modern electrical network. The voltage stability index to evaluate the power flow of the line and a novel line stability indexto assessthe line capacityare used. The TCSC is placed at the highest value of the fusedseverity index. In addition, an intermittent severity index (IMSI) is used to find the most severely affected line and is used for relocating the TCSC to a better location under different contingencies.Lognormal and Weibull probability density functions (PDFs)are utilized forassessing the output ofphotovoltaic (PV) and wind power. The proposed methodhas been implemented on the IEEE 57 bus system to validate the methodology, and the results of the integrated system with and without TCSC are comparedunder normal and contingency conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3