Optimization Method of Temperature Measuring Point Layout for Steel-Concrete Composite Bridge Based on TLS-IPDP
-
Published:2022-08-08
Issue:15
Volume:14
Page:9787
-
ISSN:2071-1050
-
Container-title:Sustainability
-
language:en
-
Short-container-title:Sustainability
Author:
Zhang Jun,Wang Da,Xiang Shengtao,Liu Yang,Tan Benkun,Yan Donghuang
Abstract
An optimization method of temperature measurement point layout for steel-concrete composite bridges based on the total least squares improved piecewise Douglas–Peucker (TLS-IPDP) algorithm was proposed to solve the problem that the traditional temperature measurement data cannot reflect the actual temperature gradient (TG) due to the position of measurement points on different paths is not reasonable. The characteristic curves of TG for the most unfavorable period and annual period are extracted from the finite element model. The rationality of the proposed method is illustrated by two typical steel-concrete composite beams with steel plates and steel boxes. By improving the classical Douglas–Peucker (DP) algorithm, the TLS-IPDP algorithm proposed in this paper has a better approximation effect on the original data. Compared with the traditional temperature measuring point arrangement method, the TLS-IPDP algorithm optimized arrangement in this paper realized the measuring point arrangement with different variable spacing under different paths; the temperature gradient curve obtained was closer to the real temperature distribution, and had higher accuracy in the region with a large gradient. In addition, the proposed method has the function of manually specifying the location of feature points and reserving the required number. The optimized arrangement of measuring points can meet the requirements of measuring points number and measurement accuracy. The method presented in this paper can provide a useful reference for temperature data acquisition and sensor layout for health monitoring of steel-composite bridges.
Funder
National Natural Science Foundation of China
Central South University of Forestry and Technology
Graduate Student Research Innovation Project of Hunan Province
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献