An Explicit Wavelet Method for Solution of Nonlinear Fractional Wave Equations

Author:

Weng Jiong,Liu Xiaojing,Zhou Youhe,Wang JizengORCID

Abstract

An explicit method for solving time fractional wave equations with various nonlinearity is proposed using techniques of Laplace transform and wavelet approximation of functions and their integrals. To construct this method, a generalized Coiflet with N vanishing moments is adopted as the basis function, where N can be any positive even number. As has been shown, convergence order of these approximations can be N. The original fractional wave equation is transformed into a time Volterra-type integro-differential equation associated with a smooth time kernel and spatial derivatives of unknown function by using the technique of Laplace transform. Then, an explicit solution procedure based on the collocation method and the proposed algorithm on integral approximation is established to solve the transformed nonlinear integro-differential equation. Eventually the nonlinear fractional wave equation can be readily and accurately solved. As examples, this method is applied to solve several fractional wave equations with various nonlinearities. Results show that the proposed method can successfully avoid difficulties in the treatment of singularity associated with fractional derivatives. Compared with other existing methods, this method not only has the advantage of high-order accuracy, but it also does not even need to solve the nonlinear spatial system after time discretization to obtain the numerical solution, which significantly reduces the storage and computation cost.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. Podlubny, I. (1999). Fractional Differential Equations, Academic Press.

2. Hilfer, R. (2000). Applications of Fractional Calculus in Physics, World Scientific.

3. A generalized definition of the fractional derivative with applications;Kaabar;Math. Probl. Eng.,2021

4. A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady–Kaabar fractional derivative;Kaabar;Comput. Math. Methods Med.,2022

5. Physical and geometrical interpretation of fractional operators;Hammond;J. Frankl. I.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3