Advancing CO2 Solubility Prediction in Brine Solutions with Explainable Artificial Intelligence for Sustainable Subsurface Storage

Author:

Shokrollahi Amin1ORCID,Tatar Afshin1,Zeinijahromi Abbas1ORCID

Affiliation:

1. School of Chemical Engineering, Discipline of Mining and Petroleum Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

Abstract

Underground CO2 storage is crucial for sustainability as it reduces greenhouse gas (GHG) emissions, helping mitigate climate change and protect the environment. This research explores the use of Explainable Artificial Intelligence (XAI) to enhance the predictive modelling of CO2 solubility in brine solutions. Employing Random Forest (RF) models, the study integrates Shapley Additive exPlanations (SHAP) analysis to uncover the complex relationships between key variables, including pressure (P), temperature (T), salinity, and ionic composition. Our findings indicate that while P and T are primary factors, the contributions of salinity and specific ions, notably chloride ions (Cl−), are essential for accurate predictions. The RF model exhibited high accuracy, precision, and stability, effectively predicting CO2 solubility even for brines not included during the model training as evidenced by R2 values greater than 0.96 for the validation and testing samples. Additionally, the stability assessment showed that the Root Mean Squared Error (RMSE) spans between 8.4 and 9.0 for 100 different randomness, which shows good stability. SHAP analysis provided valuable insights into feature contributions and interactions, revealing complex dependencies, particularly between P and ionic strength. These insights offer practical guidelines for optimising CO2 storage and mitigating associated risks. By improving the accuracy and transparency of CO2 solubility predictions, this research supports more effective and sustainable CO2 storage strategies, contributing to the overall goal of reducing greenhouse gas emissions and combating climate change.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3