Abstract
In this study, the particle size distribution and chemical composition of gold mine tailings were examined experimentally. A series of viscosity and uniaxial compressive strength (UCS) tests were used to study the relations between the viscosity of cemented tailings backfill (CTB) slurry, the solid content (SD), and the cement-to-tailings ratio (c/t). Relations between UCS performance of CTB and SD, c/t, and curing time (CT) were discussed while examining the microstructure of 28-day cured backfill with different solid contents. Results illustrate that a major increase in CTB viscosity by increasing the SD leads to the formation of tailings grains for a skeleton formation, which is formed due to consolidation and gravitational forces. The CTB’s strength increases with the increase of c/t, SD, and CT, due to a decrease in water-to-cement ratio and porosity, and an increase in hydration products over time. The SEM micrographs show how CTB’s microstructure is affected by the SD, generating ettringites and calcium silicate hydrates in the backfill matrix. The findings of this study will lead to an efficient CTB mix design for reaching the higher performance in underground mining structures, thereby reducing expenses related to the backfill.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献