Plankton Community Changes and Nutrient Dynamics Associated with Blooms of the Pelagic Cyanobacterium Trichodesmium in the Gulf of Mexico and the Great Barrier Reef

Author:

O’Neil Judith M.1ORCID,Heil Cynthia A.2,Glibert Patricia M.1ORCID,Solomon Caroline M.3,Greenwood Joan4,Greenwood Jack G.4

Affiliation:

1. Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Rd., Cambridge, MD 21613, USA

2. Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA

3. School of Science, Technology, Accessibility, Mathematics and Public Health (STAMP), Gallaudet University, 800 Florida Ave. NE, Washington, DC 20002, USA

4. School of the Environment, Centre for Marine Studies, University of Queensland, Brisbane, QLD 4072, Australia

Abstract

Blooms of the harmful dinoflagellate Karenia brevis on the West Florida Shelf (WFS), Gulf of Mexico, are hypothesized to initiate in association with the colonial cyanobacterium Trichodesmium spp. and benefit from dissolved organic nitrogen (DON) release derived from N2-fixation by the cyanobacteria. Previous studies have detected DON release using direct experimental measurements, but there have been few studies that have followed nutrient release by in situ blooms of Trichodesmium and the associated plankton community. It was determined that long-term Trichodesmium spp. and Karenia brevis abundances on the WFS were related, following a 2-month lag. A separate Eulerian study of a Trichodesmium erythraeum bloom event was conducted over 9 days on the Great Barrier Reef. Concentrations of T. erythraeum increased over the course of the study, with coincident increases in dinoflagellate abundance and decreases in diatom abundance. Inside the bloom, concentrations of NH4+, PO43−, and DON increased significantly. The copepod grazer Macrosetella gracilis also increased in abundance as T. erythraeum numbers increased, contributing to nutrient release. Copepod grazing rates were measured, and N release rates estimated. Together, these studies show that Trichodesmium blooms have consequences for dinoflagellate abundance at both seasonal and ephemeral scales via direct and indirect N release.

Funder

University of Queensland External Support Enabling Grant

NOAA ECOHAB

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3