Abstract
The excavation of tunnels in brittle rocks with high in-situ strengths under large deviatoric stresses has been shown to exhibit brittle failure at the periphery of tunnels parallel to the maximum in-situ stress. This failure can either occur instantaneously or after several hours due to the strength degradation that is implicitly and indirectly considered in typical brittle constitutive models. While these models are powerful tools for engineering analyses, they cannot predict the time at which brittle rupture occurs, but rather, they show a possible failure pattern occurring instantaneously. In this paper, a model referred to as the long-term strength (LTS) model is introduced and implemented into FLAC2D. The model is built as a modified version of the CVISC model, introduced by Itasca, by adding a strength decay function. This function is developed from lab-scale time-to-failure (TTF) data. The LTS model is verified against its corresponding analytical solution using a constant stress creep lab test and implemented into a tunnel-scale model using the geometry, stress, and geologic conditions from the Atomic Energy of Canada Limited Underground Research Laboratory (AECL URL). The results of the LTS tunnel model are then compared to an identical model using the Cohesion Weakening Friction Strengthening (CWFS) approach.
Funder
Natural Sciences and Engineering Research Council of Canada
Nuclear Waste Management Ontario - NWMO
Reference103 articles.
1. Canadian Rockburst Support Handbook;Kaiser,1996
2. How highly stressed brittle rock failure impacts tunnel design;Kaiser,2010
3. Sur une application des regles maximis et minimis a quelques problems de statique, relatives a l’architecture;Coulomb;Acad. R. Des. Sci.,1776
4. Underground Excavations in Rock;Hoek,1980
5. The Hoek–Brown failure criterion and GSI – 2018 edition
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献