A Miniature Modular Fluorescence Flow Cytometry System

Author:

Huang Shaoqi1,Li Jiale1,Wei Li1,Zheng Lulu1,Shi Zheng2,Guo Shiwei3,Dai Bo1ORCID,Zhang Dawei1,Zhuang Songlin1

Affiliation:

1. Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China

3. Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China

Abstract

Fluorescence flow cytometry is a powerful instrument to distinguish cells or particles labelled with high-specificity fluorophores. However, traditional flow cytometry is complex, bulky, and inconvenient for users to adjust fluorescence channels. In this paper, we present a modular fluorescence flow cytometry (M-FCM) system in which fluorescence channels can be flexibly arranged. Modules for particle focusing and fluorescence detection were developed. After hydrodynamical focusing, the cells were measured in the detection modules, which were integrated with in situ illumination and fluorescence detection. The signal-to-noise ratio of the detection reached to 33.2 dB. The crosstalk among the fluorescence channels was eliminated. The M-FCM system was applied to evaluate cell viability in drug screening, agreeing well with the commercial cytometry. The modular cytometry presents several outstanding features: flexibility in setting fluorescence channels, cost efficiency, compact construction, ease of operation, and the potential to upgrade for multifunctional measurements. The modular cytometry provides a multifunctional platform for various biophysical measurements, e.g., electrical impedance and refractive-index detection. The proposed work paves an innovative avenue for the multivariate analysis of cellular characteristics.

Funder

Three-Year Public Health Action Plan of Shanghai

Shanghai Science and Technology Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3