A Bacteriophage Protein-Based Impedimetric Electrochemical Biosensor for the Detection of Campylobacter jejuni

Author:

Suganthan Baviththira1ORCID,Rogers Ashley M.23ORCID,Crippen Clay S.23,Asadi Hamid1,Zolti Or1,Szymanski Christine M.23,Ramasamy Ramaraja P.1

Affiliation:

1. Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA

2. Department of Microbiology, University of Georgia, Athens, GA 30602, USA

3. Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA

Abstract

Campylobacter jejuni is a common foodborne pathogen found in poultry that can cause severe life-threatening illnesses in humans. It is important to detect this pathogen in food to manage foodborne outbreaks. This study reports a novel impedimetric phage protein-based biosensor to detect C. jejuni NCTC 11168 at 100 CFU/mL concentrations using a genetically engineered receptor-binding phage protein, FlaGrab, as a bioreceptor. The electrochemical impedance spectroscopy (EIS) technique was employed to measure changes in resistance upon interaction with C. jejuni. The sensitivity of the phage protein-immobilized electrode was assessed using the various concentrations of C. jejuni NCTC 11168 ranging from 102–109 colony forming units (CFU)/mL). The change transfer resistance of the biosensor increased with increasing numbers of C. jejuni NCTC 11168 cells. The detection limit was determined to be approximately 103 CFU/mL in the buffer and 102 CFU/mL in the ex vivo samples. Salmonella enterica subsp. enterica serotype Typhimurium-291RH and Listeria monocytogenes Scott A were used as nontarget bacterial cells to assess the specificity of the developed biosensor. Results showed that the developed biosensor was highly specific toward the target C. jejuni NCTC 11168, as no signal was observed for the nontarget bacterial cells.

Funder

UGA Center for Food Safety

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3