Genome-Wide Identification and Expression Analysis of the MADS-Box Family in Ginkgo biloba

Author:

Yang Ke,Liu Zhongbing,Chen Xueyin,Zhou Xian,Ye Jiabao,Xu FengORCID,Zhang Weiwei,Liao Yongling,Yang Xiaoyan,Wang Qijian

Abstract

As the most significant transformation stage of plants, the flowering process has typically been the focus of research. MADS-box gene plays an important regulatory role in flower development. In this study, 26 MADS-box genes were identified from Ginkgo biloba, including 10 type-I genes and 16 type-II genes, which were distributed on eight chromosomes. There was no collinearity between the GbMADS genes, and the homology with genes from other species was low. All GbMADS proteins contain conserved MADS domains. The gene structures of GbMADS in the same gene family or subfamily differed, but the conserved protein motifs had similar distributions. The microRNA (miRNA) target sites of the GbMADS genes were predicted. It was found that the expression of 16 GbMADS genes may be regulated by miRNA. The results of cis-acting element analysis showed that the 26 GbMADS genes contained a large number of hormones regulated and light-responsive elements as well as stress-response elements. Furthermore, the quantitative real-time PCR (qRT-PCR) experimental results showed that most GbMADS genes were differentially expressed in the male and female flowers at different developmental stages. Among them, the only MIKC * gene GbMADS16 has the highest expression in the metaphase development of the microstrobilus (M2) stage and is almost not expressed in female flowers. Taken together, these findings suggest that the MADS-box genes may play an important role in the development and differentiation of G. biloba flowers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3