Morphological Autoencoders for Beat-by-Beat Atrial Fibrillation Detection Using Single-Lead ECG

Author:

Silva Rafael12ORCID,Fred Ana12ORCID,Plácido da Silva Hugo12ORCID

Affiliation:

1. Department of Bioengineering (DBE), Instituto Superior Técnico (IST), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

2. Instituto de Telecomunicações (IT), Av. Rovisco Pais 1, Torre Norte—Piso 10, 1049-001 Lisboa, Portugal

Abstract

Engineered feature extraction can compromise the ability of Atrial Fibrillation (AFib) detection algorithms to deliver near real-time results. Autoencoders (AEs) can be used as an automatic feature extraction tool, tailoring the resulting features to a specific classification task. By coupling an encoder to a classifier, it is possible to reduce the dimension of the Electrocardiogram (ECG) heartbeat waveforms and classify them. In this work we show that morphological features extracted using a Sparse AE are sufficient to distinguish AFib from Normal Sinus Rhythm (NSR) beats. In addition to the morphological features, rhythm information was included in the model using a proposed short-term feature called Local Change of Successive Differences (LCSD). Using single-lead ECG recordings from two referenced public databases, and with features from the AE, the model was able to achieve an F1-score of 88.8%. These results show that morphological features appear to be a distinct and sufficient factor for detecting AFib in ECG recordings, especially when designed for patient-specific applications. This is an advantage over state-of-the-art algorithms that need longer acquisition times to extract engineered rhythm features, which also requires careful preprocessing steps. To the best of our knowledge, this is the first work that presents a near real-time morphological approach for AFib detection under naturalistic ECG acquisition with a mobile device.

Funder

Fundação para a Ciência e Tecnologia

FCT/Ministério da Ciência, Tecnologia e Ensino Superior

Instituto de Telecomunicações

National Funds

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3