Crevice Corrosion Behavior of 201 Stainless Steel in NaCl Solutions with Different pH Values by In Situ Monitoring

Author:

Zhu Zejie1,Zhang Hang1,Bai Yihan1,Liu Pan2,Yuan Haoran1,Wang Jiangying1,Cao Fahe3

Affiliation:

1. School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China

2. Frontier Research Initiative, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan

3. School of Materials, Sun Yat-Sen University, Shenzhen 518107, China

Abstract

Crevice corrosion (CC) behavior of 201 stainless steel (SS) in 1 M NaCl + x M HCl/y M NaOH solutions with various pH was investigated using SECM and optical microscopic observations. Results show that the CC was initiated by the decrease in pH value within the crevice. The pH value near the crevice mouth falls rapidly to 1.38 in the first 2 h in the strongly acidic solution, while the pH value was observed to rise firstly and then decrease in the neutral and alkaline solutions. It indicates there is no incubation phase in the CC evolution of 201-SS in a pH = 2.00 solution, while an incubation phase was observed in pH = 7.00 and 11.00 solutions. Additionally, there appeared to be a radial pH variation within the gap over time. The pH value is the lowest at the gap mouth, which is in line with the in situ optical observation result that the severely corroded region is at the mouth of the gap. The decrease in pH value inside results in the negative shift of open circuit potential (OCP) and the initiation of CC of 201-SS. The increased anodic dissolution rate in the acidic solution accelerates the breakdown of passive film inside, reducing the initiation time and stimulating the spread of CC.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3