Assessment of Impact of the Surface Modification Techniques on Structural, Biophysical, and Electrically Conductive Properties of Different Fabrics

Author:

Skrzetuska Ewa1ORCID,Puszkarz Adam K.1ORCID,Nosal Justyna1

Affiliation:

1. Textile Institute, Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Zeromskiego Str., 90-924 Lodz, Poland

Abstract

This article presents studies on the evaluation of the impact of surface modification of cotton, viscose, and polyester fabrics using three techniques (flocking, layer by layer, and screen printing) with materials with electrically conductive properties on their structural, biophysical, and conductive properties. Each tested fabric is characterized by specific biophysical properties. which can be disturbed by various modification methods, therefore, the following tests were carried out in the article: optical microscopy, micro-computed tomography, guarded perspiration heating plate, air permeability, sorption and electrical conductivity tester. The use of screen printing increased the thermal resistance of the cotton woven fabric by 119%, the polyester woven fabric by 156%, and the viscose fabric by 261%. The smallest changes in thermal resistance compared to unmodified textiles were observed in layer by layer modified fabrics and are as follows: −15% (cotton woven fabric), +77% (PES woven fabric), and +80% (viscose woven fabric).

Funder

Lodz University of Technology

Textile Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3