Usage of Microencapsulated Phase-Change Materials to Improve the Insulating Parameters of the Walls of Refrigerated Trailers

Author:

Zdun Konrad1ORCID,Robakowski Piotr1ORCID,Uhl Tadeusz1

Affiliation:

1. Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

Climate change is forcing action to reduce energy consumption and greenhouse gas emissions. An extremely important area of high-polluting energy consumption is material transport and, within this, the transport of chilled goods, including deep-frozen goods, is an important contributor. Phase change materials (PCMs) can have an important role in reducing energy consumption for the transport of chilled goods, but the current state of knowledge is not sufficient to bring the solution into popular use. This article includes a study of the effect of implementing microencapsulated PCM (mPCM) in polyurethane foam (PU) on the insulation performance of refrigerated trailer walls in low-temperature transport. In this research, mPCM was used, characterised by a phase-change heat in the range of 170–195 kJkg and a phase change temperature in the range from −10 °C to −9 °C. The studies performed show the potential of using mPCMs to improve the insulation performance of the walls of refrigerated trailers. Containing mPCM in the amount of 5.0% wt. placed throughout the entire volume of the wall can improve thermal conductivity of the wall for up to 15% in peak and 4.5% (0.2792 Wm2K without mPCM and 0.2665 Wm2K with mPCM) in the phase change temperature range. Out of the range of phase change temperatures, the thermal conductivity of the wall with mPCM is worse for 2.72% than in walls without PCM. Problems that need to be tackled were also identified, before the solution can be put into everyday use, i.e., finding the technology to increase the proportion of mPCMs relative to PU.

Funder

National Centre of Research and Development

Publisher

MDPI AG

Reference27 articles.

1. Eurostat (2024, February 06). Shedding Light on Energy in the EU. Available online: https://ec.europa.eu/eurostat/web/interactive-publications/energy-2023#energy-consumption.

2. Eurostat (2024, February 14). What Kind of Energy Do We Consume in the EU?. Available online: https://ec.europa.eu/eurostat/cache/infographs/energy_2022/bloc-3a.html?lang=en.

3. Operations Research for green logistics—An overview of aspects, issues, contributions and challenges;Dekker;Eur. J. Oper. Res.,2012

4. Food transport refrigeration—Approaches to reduce energy consumption and environmental impacts of road transport;Tassou;Appl. Therm. Eng.,2009

5. Development of a novel refrigeration system for refrigerated trucks;Liu;Appl. Energy,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3