Model for Identification of Electrical Appliance and Determination of Patterns Using High-Resolution Wireless Sensor NETWORK for the Efficient Home Energy Consumption Based on Deep Learning

Author:

Ulloa-Vásquez Fernando1ORCID,Heredia-Figueroa Victor2ORCID,Espinoza-Iriarte Cristóbal2ORCID,Tobar-Ríos José2,Aguayo-Reyes Fernanda2,Carrizo Dante3ORCID,García-Santander Luis4ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago de Chile 7800002, Chile

2. Programa de Investigación en Radiocomunicación Digital, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago de Chile 7800022, Chile

3. Departamento Ing. Informatica y Cs. de la Computación, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1531772, Chile

4. Departamento de Ingeniería Eléctrica, Universidad de Concepción, Concepción 4089100, Chile

Abstract

The growing demand for electricity and the constant increase in electricity rates have intensified the interest of residential and non-residential energy consumers to reduce their energy consumption. The introduction of non-conventional renewable energies (photovoltaic and wind, in the residential case) demands new proposals to obtain a home energy management system (HEMS), which allows reducing the use of electrical energy. This article incorporates artificial intelligence techniques to demand response, allowing control, switching, turning on and off of appliances, modifying and reducing consumption, and achieving improvements in the quality of life in the home. In addition, an architecture based on a smart socket and an artificial intelligence model that recognizes the consumption of electrical appliances in high resolution (sampling every 10 s) is proposed. The system uses the Wi-Fi communication protocol, ensuring that the smart sockets wirelessly provide the data obtained to the public cloud. The use of Deep Learning allows us to obtain a central control model of the home, which, when interconnected to the smart electrical distribution networks of companies, could generate a positive impact on the environmental effects and CO2 reduction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3