Mycotoxins from Tomato Pathogenic Alternaria alternata and Their Combined Cytotoxic Effects on Human Cell Lines and Male Albino Rats

Author:

Ismail Ahmed123ORCID,Elshewy Eman3,El-Ganainy Sherif123ORCID,Magistà Donato45ORCID,Hamouda Ahlam6,Alhudaib Khalid12,Ebrahim Weaam7ORCID,Almaghasla Mustafa12ORCID

Affiliation:

1. Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia

2. Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia

3. Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt

4. Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70126 Bari, Italy

5. Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy

6. Department of Forensic Medicine and Toxicology, Teaching Hospital, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt

7. Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

Abstract

The Alternaria species are considered to produce a plethora of several mycotoxins constituting a risk factor for both human and animal health. This work aimed mainly to explore the cytotoxicity of a combined mixture of altenuene (ALT), alternariol (AOH), tenuazonic acid (TeA), and altenuisol (AS) toxins produced by pathogenic A. alternata toward human oral epithelial cells (PCS-200-014), lung fibroblast cells (WI-38), and male albino rats. The sequencing of the multi-locus, RNA polymerase second largest subunit (rpb2), glyceraldehyde-3-phosphate dehydrogenase (gapdh), and Alternaria major allergen gene (Alt a 1) was performed to infer relationships among isolated Alternaria species. The phylogenetic analysis of gapdh, rpb2, and Alt-a 1 sequence data indicated that all isolates resided in A. alternata. The pathogenic potentiality of A. alternata was investigated on tomato plants cv. super strain B under greenhouse conditions, and all isolates were pathogenic to tomato plants, with significant (p < 0.05) variations. The ability of A. alternata isolates to produce mycotoxins was also explored using high-performance liquid chromatography (HPLC). All tested isolates were able to produce at least one of the assessed mycotoxins—ALT, AOH, TeA, and AS—and ALT was reported as the dominant mycotoxin, produced by 80% of A. alternata isolates. The cytotoxic properties of the combined mixture of ALT, AOH, TeA, and AS at concentrations of 31.25, 62.50, 125, 250, and 500 µg/mL were assessed via the MTT assay method after exposure for 24 h versus the control. The treatment of both cell lines with combined mixtures of ALT, AOH, TeA, and AS showed a dose-dependent decrease in cell viability. The highest concentrations tested at 62.50, 125, 250, and 500 µg/mL significantly decreased cell viability and caused cell damage compared to the lowest concentration of 31.25 µg/mL and the control. The cytotoxicity and genotoxicity of the combined mixtures of ALT, AOH, TeA, and AS on male albino rats were also investigated via the gene expression of (TNF-α) and using hematological (CBC), chemical (alanine aminotransferase (ALT), aspartate aminotransferase (AST) and urea and creatinine), and histopathological analyses. A marked increase was observed in the levels of ALT, AST, urea and creatinine, TNF-α gene expression, red blood cells (RBCs), white blood cells (WBCs), hemoglobin (Hb), and packed cell volume % (PCV) after 28 days of exposure relative to the untreated control. Pathological alterations were also observed in the liver and kidney tissues of rats. Conclusively, this work provides a new understanding on the cytotoxicity and genotoxicity of mycotoxins of pathogenic A. alternata from tomatoes.

Funder

Deputyship for Research and Innovation; Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3