Automated Estimation of Construction Equipment Emission Using Inertial Sensors and Machine Learning Models

Author:

Shahnavaz FaridORCID,Akhavian RezaORCID

Abstract

The construction industry is one of the main producers of greenhouse gasses (GHG). With the looming consequences of climate change, sustainability measures including quantifying the amount of air pollution during a construction project have become an important project objective in the construction industry. A major contributor to air pollution during construction projects is the use of heavy equipment. Therefore, efficient operation and management can substantially reduce a project’s carbon footprint and other environmental harms. Using unintrusive and indirect methods to predict on-road vehicle emissions has been a widely researched topic. Nevertheless, the same is not true in the case of construction equipment. This paper describes the development and deployment of a framework that uses machine learning (ML) methods to predict the level of emissions from heavy construction equipment. Data is collected via an Internet of Things (IoT) approach with accelerometer and gyroscope sensors as data collection nodes. The developed framework was validated using an excavator performing real-world construction work. A portable emission measurement system (PEMS) was used along with the inertial sensors to record the amount of CO, NOX, CO2, SO2, and CH4 pollution emitted by the equipment. Different ML algorithms were developed and compared to identify the best model to predict emission levels from inertial sensors data. The results show that Random Forest with the coefficient of determination (R2) of 0.94, 0.91, and 0.94, and normalized root-mean-square error (NRMSE) of 4.25, 6.42, and 5.17 for CO, NOX, and CO2, respectively, was the best algorithm among different models evaluated in this study.

Funder

California State University Transportation Consortium

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3