Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions

Author:

Elaiw Ahmed M.,Alshehaiween Safiya F.,Hobiny Aatef D.

Abstract

In this paper, we construct an Human immunodeficiency virus (HIV) dynamics model with impairment of B-cell functions and the general incidence rate. We incorporate three types of infected cells, (i) latently-infected cells, which contain the virus, but do not generate HIV particles, (ii) short-lived productively-infected cells, which live for a short time and generate large numbers of HIV particles, and (iii) long-lived productively-infected cells, which live for a long time and generate small numbers of HIV particles. The model considers five distributed time delays to characterize the time between the HIV contact of an uninfected CD4 + T-cell and the creation of mature HIV. The nonnegativity and boundedness of the solutions are proven. The model admits two equilibria, infection-free equilibrium E P 0 and endemic equilibrium E P 1 . We derive the basic reproduction number R 0 , which determines the existence and stability of the two equilibria. The global stability of each equilibrium is proven by utilizing the Lyapunov function and LaSalle’s invariance principle. We prove that if R 0 < 1 , then E P 0 is globally asymptotically stable, and if R 0 > 1 , then E P 1 is globally asymptotically stable. These theoretical results are illustrated by numerical simulations. The effect of impairment of B-cell functions, time delays, and antiviral treatment on the HIV dynamics are studied. We show that if the functions of B-cells are impaired, then the concentration of HIV is increased in the plasma. Moreover, we observe that the time delay has a similar effect to drug efficacy. This gives some impression for developing a new class of treatments to increase the delay period and then suppress the HIV replication.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3