The New Frontiers of Fetal Imaging: MRI Insights into Cardiovascular and Thoracic Structures

Author:

Cundari Giulia1ORCID,Galea Nicola1ORCID,Di Mascio Daniele2,Gennarini Marco1,Ventriglia Flavia2,Curti Federica1,Dodaro Martina1ORCID,Rizzo Giuseppe2ORCID,Catalano Carlo1,Giancotti Antonella2,Manganaro Lucia1ORCID

Affiliation:

1. Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy

2. Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy

Abstract

Fetal magnetic resonance imaging (fMRI) represents a second-line imaging modality that provides multiparametric and multiplanar views that are crucial for confirming diagnoses, detecting associated pathologies, and resolving inconclusive ultrasound findings. The introduction of high-field magnets and new imaging sequences has expanded MRI’s role in pregnancy management. Recent innovations in ECG-gating techniques have revolutionized the prenatal evaluation of congenital heart disease by synchronizing imaging with the fetal heartbeat, thus addressing traditional challenges in cardiac imaging. Fetal cardiac MRI (fCMR) is particularly valuable for assessing congenital heart diseases, especially when ultrasound is limited by poor imaging conditions. fCMR allows for detailed anatomical and functional evaluation of the heart and great vessels and is also useful for diagnosing additional anomalies and analyzing blood flow patterns, which can aid in understanding abnormal fetal brain growth and placental perfusion. This review emphasizes fMRI’s potential in evaluating cardiac and thoracic structures, including various gating techniques like metric optimized gating, self-gating, and Doppler ultrasound gating. The review also covers the use of static and cine images for structural and functional assessments and discusses advanced techniques like 4D-flow MRI and T1 or T2 mapping for comprehensive flow quantification and tissue characterization.

Funder

Sapienza University of Rome

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3