Macroscopic Behavior and Microscopic Structure Evolution of Marine Clay in One-Dimensional Compression Revealed by Discrete Element Simulation

Author:

Luo Lisha,Shen Zhifu,Gao Hongmei,Wang Zhihua,Zhou Xin

Abstract

Marine clay has been attracting in-depth research on its mechanical behavior and internal structure evolution, which are crucial to marine infrastructure safety. In the formation process of marine clay, including the sedimentation and consolidation stages, the compression behavior and internal structure evolution are highly dependent on the pore water salinity. Discrete element method (DEM) simulation is a powerful tool to study the microscopic mechanics behind the complicated macroscopic mechanical behavior of marine clay. In this study, a DEM simulation scheme is systematically proposed to numerically study the macroscopic beahvior and microscopic structure evolution of marine clay in one-dimensional compression that mimics the marine clay formation process. First, the proposed calculation scheme for double layer repulsive interaction and van der Waals interaction is introduced. Then, the developed DEM simulation scheme is validated by satisfactorily reproducing the experimentally observed one-dimensional compression curves and internal structure transition from an edge-to-edge/edge-to-face flocculated structure to a face-to-face dispersed structure. Finally, evolutions of coordinate number and fabric anisotropy are quantitatively evaluated in the microscopic view. The noticeable effects of ion concentration on the internal structure evlotion and mechanical behavior of marine clay have been examined and discussed.

Funder

National Natural Science Foundation of China for Young Researcher

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3