Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor

Author:

Jiang Zhe1,Li Kan1,Jia Jinping1

Affiliation:

1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China

Abstract

The rotating disk photocatalytic reactor is a kind of photocatalytic wastewater treatment technique with a high application potential, but the light energy utilization rate and photo quantum efficiency still need to be improved. Taking photogenerated electrons as the starting point, the following contents are reviewed in this work: (1) Light-harvesting excitation of photogenerated electrons. Based on the rotating disk thin solution film photocatalytic reactor, the photoanodes with light capture structures are reviewed from the macro perspective, and the research progress of light capture structure catalysts based on BiOCl is also reviewed from the micro perspective. (2) Macroscope transfer of photogenerated electrons. The research progress of photo fuel cell based on rotating disk reactors is reviewed. The system can effectively convert the chemical energy in organic pollutants into electrical energy through the macroscopic transfer of photogenerated electrons. (3) Multi-level utilization of photogenerated electrons. The photogenerated electrons transferred to the cathode can also generate H2O2 with oxygen or H2 with H+, and the reduction products can also be further utilized to deeply mineralize organic pollutants or reduce the nitrate in water. This short review will provide theoretical guidance for the further application of photocatalytic techniques in wastewater treatment.

Funder

National Natural Science Foundation of China

National Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3