A Differential-Geometric Approach to Quantum Ignorance Consistent with Entropic Properties of Statistical Mechanics

Author:

Ray Shannon12ORCID,Alsing Paul M.1,Cafaro Carlo3,Jacinto H S.1

Affiliation:

1. Air Force Research Laboratory, Rome, NY 13441, USA

2. Griffiss Institute, Rome, NY 13441, USA

3. Department of Mathematics and Physics, SUNY Polytechnic Institute, Albany, NY 12203, USA

Abstract

In this paper, we construct the metric tensor and volume for the manifold of purifications associated with an arbitrary reduced density operator ρS. We also define a quantum coarse-graining (CG) to study the volume where macrostates are the manifolds of purifications, which we call surfaces of ignorance (SOI), and microstates are the purifications of ρS. In this context, the volume functions as a multiplicity of the macrostates that quantifies the amount of information missing from ρS. Using examples where the SOI are generated using representations of SU(2), SO(3), and SO(N), we show two features of the CG: (1) A system beginning in an atypical macrostate of smaller volume evolves to macrostates of greater volume until it reaches the equilibrium macrostate in a process in which the system and environment become strictly more entangled, and (2) the equilibrium macrostate takes up the vast majority of the coarse-grained space especially as the dimension of the total system becomes large. Here, the equilibrium macrostate corresponds to a maximum entanglement between the system and the environment. To demonstrate feature (1) for the examples considered, we show that the volume behaves like the von Neumann entropy in that it is zero for pure states, maximal for maximally mixed states, and is a concave function with respect to the purity of ρS. These two features are essential to typicality arguments regarding thermalization and Boltzmann’s original CG.

Funder

United States Air Force Research Laboratory (AFRL) Summer Faculty Fellowship Program

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3