Ultrasound-Assisted Extraction, LC–MS/MS Analysis, Anticholinesterase, and Antioxidant Activities of Valuable Natural Metabolites from Astragalus armatus Willd.: In Silico Molecular Docking and In Vitro Enzymatic Studies

Author:

Lekmine SabrinaORCID,Bendjedid Samira,Benslama Ouided,Martín-García Antonio IgnacioORCID,Boussekine Samira,Kadi Kenza,Akkal SalahORCID,Nieto GemaORCID,Sami RokayyaORCID,Al-Mushhin Amina A. M.,Baakdah Morooj M.,Aljaadi Abeer M.ORCID,Alharthy Saif A.

Abstract

The Astragalus armatus Willd. plant’s phenolic constituent extraction and identification were optimized using the ultrasound-assisted extraction (UAE) method and the LC–MS/MS analysis, respectively. Additionally, cupric reducing antioxidant capacity (CUPRAC), beta carotene, reducing power, DMSO alcalin, silver nanoparticle (SNP)-based method, phenanthroline, and hydroxyl radical tests were utilized to assess the extract’s antioxidant capacity, while the neuroprotective effect was examined in vitro against acetylcholinesterase enzyme. This study accurately estimated the chemical bonding between the identified phenolic molecules derived from LC–MS/MS and the AChE. The extract was found to contain sixteen phenolic substances, and rosmarinic, protocatechuic, and chlorogenic acids, as well as 4-hydroxybenzoic, hyperoside, and hesperidin, were the most abundant substances in the extract. In all antioxidant experiments, the plant extract demonstrated strong antioxidant activity and a significant inhibitory impact against AChE (40.25 ± 1.41 μg/mL). According to molecular docking affinity to the enzyme AChE, the top-five molecules were found to be luteolin, quercetin, naringenin, rosmarinic acid, and kaempferol. Furthermore, these tested polyphenols satisfy the essential requirements for drug-like characteristics and Lipinski’s rule of five. These results highlight the significance of the A. armatus plant in cosmetics, as food additives, and in the pharmaceutical industry due to its rosmarinic and chlorogenic acid content.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3