MARCKS Is an Essential Regulator of Reactive Oxygen Species Production in the Monocytic Cell Type

Author:

Huber RenéORCID,Diekmann MareikeORCID,Hoffmeister Leonie,Kühl Friederike,Welz Bastian,Brand Korbinian

Abstract

Myristoylated alanine-rich C-kinase substrate (MARCKS) is a ubiquitous protein mediating versatile effects in a variety of cell types, including actin crosslinking, signal transduction, and intracellular transport processes. MARCKS’s functional role in monocyte/macrophages, however, has not yet been adequately addressed. Thus, the aim of this study was to further elucidate the impact of MARCKS on central cellular functions of monocytic cells. To address this topic, we generated monocytic THP-1 (Tohoku Hospital Pediatrics-1)-derived MARCKS wildtype and knockout (KO) cells using the CRISPR/Cas9 technique. Remarkably, in the absence of MARCKS, both total and intracellular reactive oxygen species (ROS) production were strongly suppressed but restored following transient MARCKS re-transfection. In contrast, proliferation, differentiation, cytokine expression, and phagocytosis remained unaltered. A complete inhibition of ROS production could also be achieved in THP-1-derived PKCβ KO cells or in PKC inhibitor Staurosporine-treated primary human monocytes. MARCKS deficiency also involved reduced basal Akt phosphorylation and delayed re-phosphorylation. Further analyses indicated that long-term TNF pre-incubation strongly enhances monocytic ROS production, which was completely blocked in MARCKS and PKCβ KO cells. Collectively, our study demonstrates that MARCKS is an essential molecule enabling ROS production by monocytic cells and suggests that MARCKS is part of a signal cascade involved in ROS formation.

Funder

Hannover Biomedical Research School

Stiftung für Pathobiochemie und Molekulare Diagnostik

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3