Friction Behaviour of 6082-T6 Aluminium Alloy Sheets in a Strip Draw Tribological Test

Author:

Trzepieciński Tomasz1ORCID,Slota Ján2ORCID,Kaščák Ľuboš2ORCID,Gajdoš Ivan2,Vojtko Marek3

Affiliation:

1. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland

2. Institute of Technology and Material Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia

3. The Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia

Abstract

Aluminium alloy sheets cause many problems in sheet metal forming processes owing to their tendency to gall the surface of the tool. The paper presents a method for the determination of the kinematic friction coefficient of friction pairs. The determination of coefficient of friction (COF) in sheet metal forming requires specialised devices that ‘simulate’ friction conditions in specific areas of the formed sheet. In this article, the friction behaviour of aluminium alloy sheets was determined using the strip drawing test. The 1-mm-thick 6082 aluminium alloy sheets in T6 temper were used as test material. Different values for nominal pressures (4.38, 6.53, 8.13, 9.47, 10.63, and 11.69 MPa) and different sliding speeds (10 and 20 mm/min.) were considered. The change of friction conditions was also realised with several typical oils (hydraulic oil LHL 32, machine oil LAN 46 and engine oil SAE 5W-40 C3) commonly used in sheet metal forming operations. Friction tests were conducted at room temperature (24 °C). The main tribological mechanisms accompanying friction (adhesion, flattening, ploughing) were identified using a scanning electron microscope (SEM). The influence of the parameters of the friction process on the value of the COF was determined using artificial neural networks. The lowest value of the COF was recorded when lubricating the sheet metal surface with SAE 5W40 C3 engine oil, which is characterised as the most viscous of all tested lubricants. In dry friction conditions, a decreasing trend of the COF with increasing contact pressure was observed. In the whole range of applied contact pressures (4.38–11.69 MPa), the value of the COF during lubrication with SAE 5W40 C3 engine oil was between 0.14 and 0.17 for a sliding speed of 10 mm/min and between 0.13 and 0.16 for a sliding speed of 20 mm/min. The value of the COF during dry friction was between 0.23 and 0.28 for a sliding speed of 10 mm/min and between 0.22 and 0.26 for a sliding speed of 20 mm/min. SEM micrographs revealed that the main friction mechanism of 6082-T6 aluminium alloys sheet in contact with cold-work tool steel flattens surface asperities. The sensitivity analysis of the input parameters on the value of COF revealed that oil viscosity has the greatest impact on the value of the COF, followed by contact pressure and sliding speed.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3