Relationship between Concrete Hole Shape and Meso-Crack Evolution Based on Stereology Theory and CT Scan under Compression

Author:

Ding Weihua,Zhu Lin,Li Hu,Lei Man,Yang Fan,Qin Junrong,Li Aiguo

Abstract

To achieve more accurate prediction of the potential failure location and to conduct a deeper analysis of the failure mechanism of concrete constructions, it is critical to probe the evolution process of internal meso-cracks that bear various intensities of load. While a computer Tomography (CT) test provides a non-destructive detection technique for obtaining the internal meso-damage state of concrete, traditional image processing and Digital Image Correlation (DIC) are ineffective in extracting meso-damage information from concrete CT images. On the other hand, by observing the shape change law of concrete’s internal holes under load, it is proposed to use the hole roundness and area fraction formula, developed based on the stereology principle and morphology, to characterize and predict the potential failure location. Four features particularly addressed include the CT image as a whole, image equal partitioning, crack and non-crack areas, and representative holes. The approach is to explore the variation law of critical hole shape parameters, especially the hole roundness under different loading stages, and analyze the relationship between the change in hole shapes and the final macro-crack positions. It is found that compared with the average area fraction, the average hole roundness value of cross section images is more sensitive to the change in stress. In both uniform partitioning and non-uniform partitioning, the average hole roundness value near the final macro-crack location exhibits an increase trend with the stress, while the smoothing effect caused by the hole roundness averaging always exists. Near the final macro-crack location, the roundness of each individual hole is positively associated with the stress, while away from the final macro-crack location such a relation may not be observed. This trend expounds the evolution process of meso-damage in concrete, and the finding can be used to predict the accurate locations of macro-cracks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3