The Causes of “Vulnerable Regions” to Air Pollution in Winter in the Beijing-Tianjin-Hebei Region: A Topographic–Meteorological Impact Model Based on Adaptive Emission Constraint Technique

Author:

Meng ,Xu ,Xu ,Wang ,Liu ,Jiao

Abstract

The Beijing-Tianjin-Hebei (BTH) region, with its complex terrain, has serious issues with air pollution. The northern and western parts of the BTH region are surrounded by the Yan Mountains and Loess Plateau (LP), and the south-central part of that region is a large open plain. Such special geographic configuration is prone to result in a concentrated pollution belt along the north-to-south direction on the eastern margin of the plateau, in addition to the influence of pollutant-emission sources and population distribution. In this study, based on an original adaptive nudging constraint method, we quantitatively analyzed the differences in the influence of emission sources under different dynamic and thermal conditions in the BTH region, which is impacted by a special large-scale leeward slope terrain. The mechanism of air pollution vulnerability and the comprehensive effects of terrain–meteorological conditions on air pollution in the BTH region were also discussed. The results indicated that the atmospheric diffusion conditions on the eastern side of the plateau were poor, and a sub-synoptic-scale “vortex sequence”, which was composed of a series of linked vortices, was identified. The corresponding atmospheric pollution convergence line stretched from Beijing to Hebei to Northern Henan in the lower atmosphere. On the eastern edge of the plateau, a “warm cover” formed by a temperature anomaly and a downdraft impeded the vertical diffusion of pollutants. Therefore, pollutants tended to converge at the eastern edge of the plateau, and the pollution belts would move longitudinally north and south along the topography of the eastern slope when south-westerly and north-easterly winds alternated. The movement generated a “train” of pollutants that were transported on the eastern edge of the plateau, which then caused air pollution to persist there. Such terrain–meteorological conditions amplified the effects of emissions by an average of 50% to 150% in the region, leading the eastern side of the LP to become a “naturally vulnerable region” to haze pollution.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference45 articles.

1. A modeling analysis of a heavy air pollution episode occurred in Beijing

2. The distribution and trends of fog and haze in the North China Plain over the past 30 years

3. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China;Gang;Int. J. Environ. Res. Public Health,2014

4. PM2.5 and the Environment in China;Cao,2014

5. High secondary aerosol contribution to particulate pollution during haze events in China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3