Affiliation:
1. Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
Abstract
Electrospun nanofibers have been used as wound dressings to protect skin from infection and promote wound healing. In this study, we developed polyvinylpyrrolidone (PVP)/silicon dioxide (SD) composite nanofibers for the delivery of probiotic Saccharomyces cerevisiae (SC), which potentially aids in wound healing. PVP/SD composite nanofibers were optimized through electrospinning, and bead-free nanofibers with an average diameter of 624.7 ± 99.6 nm were fabricated. Next, SC, a wound-healing material, was loaded onto the PVP/SD composite nanofibers. SC was encapsulated in nanofibers, and nanofibers were prepared using SC, PVP, SD, water, and ethanol in a ratio of 3:4:0.1:4.8:1.2. The formation of smooth nanofibers with protrusions around SC was confirmed using SEM. Nanofiber dressing properties were physicochemically and mechanically characterized by evaluating SEM, DSC, XRD, and FTIR images, tensile strength, and elongation at break. Additionally, a release test of active substances was performed. The absence of interactions between SC, PVP, and SD was confirmed through physicochemical evaluation, and SEM images showed that the nanofiber dressing contained SC and had a porous structure. It also showed a 100% release of SC within 30 min. Overall, our study showed that SC-loaded PVP/SD composite nanofibers prepared using the electrospinning method are promising wound dressings.