Tribocorrosion Behavior of NiCoCrMoCu Alloys Containing Different Carbides in Acidic Media at Various Applied Loads and Sliding Speeds

Author:

Li Chao1,Zeng Ziming1,Teng Jianwei2,Yang Biaobiao134,Li Yunping1ORCID

Affiliation:

1. State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China

2. Institute for Advanced Studies in Precision Materials, Yantai University, Yantai 264005, China

3. IMDEA Materials Institute, C/Eric Kandel 2, Getafe, 28906 Madrid, Spain

4. Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, 28040 Madrid, Spain

Abstract

In this study, the ball-on-disk sliding wear and tribocorrosion behavior in the H2SO4 and HCl solution of NiCoCrMoCu alloys with carbon additions of 0.2, 1, 1.5, and 2 wt.% with the Al2O3 ball as a counterpart was investigated systematically. Obvious tribocorrosion antagonistic effects were found after wear in both aqueous solutions. Compared with dry sliding wear conditions, the lubrication effect of the aqueous solution significantly reduces the wear rate of the alloy, and the reduction effect in the H2SO4 aqueous solution was more obvious than that in HCl. The antagonistic effects of the 0.2C and 1C alloys decrease with the load and sliding rate, while those of the 1.5C and 2C alloys increase. The (coefficient of friction) COF and wear rate under different loads and sliding rates were analyzed using the response surface analysis (RSM) method. It was found that the COF mainly showed dependence on the sliding rate, while the wear rate showed dependence on load and sliding speed.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3