Relationship between El Niño-Southern Oscillation and Atmospheric Aerosols in the Legal Amazon

Author:

Pereira Augusto G. C.1,Palácios Rafael1,Santos Paula C. R.2,Pereira Raimundo Vitor S.1,Cirino Glauber1ORCID,Imbiriba Breno1

Affiliation:

1. Institute of Geosciences, Federal University of Pará, UFPA, Belém 66075-110, PA, Brazil

2. Institute of Biological Sciences, Federal University of Pará, UFPA, Belém 66075-110, PA, Brazil

Abstract

The El Niño-Southern Oscillation (ENSO) stands out as the most significant tropical phenomenon in terms of climatic magnitude resulting from ocean–atmosphere interaction. Due to its atmospheric teleconnection mechanism, ENSO influences various environmental variables across distinct atmospheric scales, potentially impacting the spatiotemporal distribution of atmospheric aerosols. Within this context, this study aims to evaluate the relationship between ENSO and atmospheric aerosols across the entire Legal Amazon during the period from 2006 to 2011. Over this five-year span, four ENSO events were identified. Concurrently, an analysis of the spatiotemporal variability of aerosol optical depth (AOD) and Black Carbon radiation extinction (EAOD-BC) was conducted alongside these ENSO events, utilizing data derived from the Aerosol Robotic Network (AERONET), MERRA-2 model, and ERSSTV5. Employing the Windowed Cross-Correlation (WCC) approach, statistically significant phase lags of up to 4 to 6 months between ENSO indicators and atmospheric aerosols were observed. There was an approximate 100% increase in AOD immediately after El Niño periods, particularly during intervals encompassing the La Niña phase. The analysis of specific humidity anomaly (QA) revealed that, contrary to expectations, positive values were observed throughout most of the El Niño period. This result suggests that while there is a suppression of precipitation events during El Niño due to the subsidence of drier air masses in the Amazon, the region still exhibits positive specific humidity (Q) conditions. The interaction between aerosols and humidity is intricate. However, Q can exert influence over the microphysical and optical properties of aerosols, in addition to affecting their chemical composition and aerosol load. This influence primarily occurs through water absorption, leading to substantial alterations in radiation scattering characteristics, and thus affecting the extinction of solar radiation.

Funder

UFPA

PAPQ

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3