Eupatilin Ameliorates Hepatic Fibrosis and Hepatic Stellate Cell Activation by Suppressing β-catenin/PAI-1 Pathway

Author:

Hu Jinyuan1,Liu Yuanyuan2,Pan Zheng1,Huang Xuekuan13,Wang Jianwei13,Cao Wenfu1,Chen Zhiwei13

Affiliation:

1. Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China

2. Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China

3. Department of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China

Abstract

The activation of hepatic stellate cells (HSCs) has proved to be pivotal in hepatic fibrosis. Therefore, the suppression of HSC activation is an effective anti-fibrotic strategy. Although studies have indicated that eupatilin, a bioactive flavone found in Artemisia argyi, has anti-fibrotic properties, the effect of eupatilin on hepatic fibrosis is currently unclear. In this study, we used the human hepatic stellate cell line LX-2 and the classical CCl4-induced hepatic fibrosis mouse model for in vitro and vivo experiments. We found that eupatilin significantly repressed the levels of the fibrotic markers COL1α1 and α-SMA, as well as other collagens in LX-2 cells. Meanwhile, eupatilin markedly inhibited LX-2 cell proliferation, as verified by the reduced cell viability and down-regulation of c-Myc, cyclinB1, cyclinD1, and CDK6. Additionally, eupatilin decreased the level of PAI-1 in a dose-dependent manner, and knockdown of PAI-1 using PAI-1-specific shRNA significantly suppressed the levels of COL1α1, α-SMA, and the epithelial–mesenchymal transition (EMT) marker N-cadherin in LX-2 cells. Western blotting indicated that eupatilin reduced the protein level of β-catenin and its nuclear translocation, while the transcript level of β-catenin was not affected in LX-2 cells. Furthermore, analysis of histopathological changes in the liver and markers of liver function and fibrosis revealed that hepatic fibrosis in CCl4-treated mice was markedly alleviated by eupatilin. In conclusion, eupatilin ameliorates hepatic fibrosis and hepatic stellate cell activation by suppressing the β-catenin/PAI-1 pathway.

Funder

National Natural Science Foundation of China

Natural Science Foundation Project of Chongqing

Science and Technology Research Program of Chongqing Municipal Education Commission

Program of Chongqing Health Commission

CQMU Program for Youth Innovation in Future Medicine

Xinglin program of Chongqing TCM/TCM-integrated Key discipline

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3