dCas9-Based PDGFR–β Activation ADSCs Accelerate Wound Healing in Diabetic Mice through Angiogenesis and ECM Remodeling

Author:

Li Yumeng1,Li Deyong1,You Lu1,Deng Tian1,Pang Qiuyu1,Meng Xiangmin1,Zhu Bingmei1

Affiliation:

1. Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China

Abstract

The chronic wound represents a serious disease characterized by a failure to heal damaged skin and surrounding soft tissue. Mesenchymal stem cells (MSCs) derived from adipose tissue (ADSCs) are a promising therapeutic strategy, but their heterogeneity may result in varying or insufficient therapeutic capabilities. In this study, we discovered that all ADSCs populations expressed platelet–derived growth factor receptor β (PDGFR–β), while the expression level decreased dynamically with passages. Thus, using a CRISPRa–based system, we endogenously overexpressed PDGFR–β in ADSCs. Moreover, a series of in vivo and in vitro experiments were conducted to determine the functional changes in PDGFR–β activation ADSCs (AC–ADSCs) and to investigate the underlying mechanisms. With the activation of PDGFR–β, AC–ADSCs exhibited enhanced migration, survival, and paracrine capacity relative to control ADSCs (CON–ADSCs). In addition, the secretion components of AC–ADSCs contained more pro–angiogenic factors and extracellular matrix–associated molecules, which promoted the function of endothelial cells (ECs) in vitro. Additionally, in in vivo transplantation experiments, the AC–ADSCs transplantation group demonstrated improved wound healing rates, stronger collagen deposition, and angiogenesis. Consequently, our findings revealed that PDGFR–β overexpression enhanced the migration, survival, and paracrine capacity of ADSCs and improved therapeutic effects after transplantation to diabetic mice.

Funder

National Natural Science Foundation of China

UTHSC/WCHSU CORNET Award

CRISPR/Cas9 gene editing technology of the Regenerative Medicine Research Center of West China Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3