Land Use and Climate Change Effects on Streamflow and Nutrient Loads in a Temperate Catchment: A Simulation Study

Author:

Ayele Gebiaw T.1ORCID,Yu Bofu1,Hamilton David P.1ORCID

Affiliation:

1. Australian Rivers Institute and School of Engineering, Griffith University, Nathan, QLD 4111, Australia

Abstract

Climate and land use changes impact catchment hydrology and water quality (WQ), yet few studies have investigated the amount of land use changes required to meet specific WQ targets under future climate projections. The aim of this study was to determine streamflow and nutrient load responses to future land use change (LUC) and climate change scenarios. We hypothesized that (1) increasing forest coverage would decrease nutrient loads, (2) climate change, with higher temperatures and more intense storms, would lead to increased flow and nutrient loads, and (3) LUC could moderate potential nutrient load increases associated with climate change. We tested these hypotheses with the Soil and Water Assessment Tool (SWAT), which was applied to a lake catchment in New Zealand, where LUC strategies with afforestation are employed to address lake WQ objectives. The model was calibrated from 2002 to 2005 and validated from 2006 to 2010 using measured streamflow (Q) and total nitrogen (TN), total phosphorus (TP), nitrate (NO3-N), and ammonium (NH4-N) concentrations of three streams in the catchment. The model performance across the monitored streams was evaluated using coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) metrics to provide a basis for model projections. Future scenarios incorporated LUC and climate change (CC) based on the Representative Concentration Pathway 8.5 and were compared to the baseline streamflow and WQ indicators. Consistent with our hypotheses, Q, TN, and TP loads were predicted to decrease with afforestation. Specifically, afforestation of 1.32 km2 in one of the monitored stream sub-catchments (subbasin 3), or 8.8% of the total lake catchment area, would result in reductions of 11.9, 26.2, and 17.7% in modeled annual mean Q, TN, and TP loads, respectively. Furthermore, when comparing simulations based on baseline and projected climate, reductions of 13.6, 22.8, and 19.5% were observed for Q, TN, and TP loads, respectively. Notably, the combined implementation of LUC and CC further decreased Q, TN, and TP loads by 20.2, 36.7, and 28.5%, respectively. This study provides valuable insights into the utilization of LUC strategies to mitigate nutrient loads in lakes facing water quality challenges, and our findings could serve as a prototype for other lake catchments undergoing LUC. Contrary to our initial hypotheses, we found that higher precipitation and temperatures did not result in increased flow and nutrient loading.

Funder

Griffith University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3