Quantifying Dieback in a Vulnerable Population of Eucalyptus macrorhyncha Using Remote Sensing

Author:

Fitzgerald Donna L.1ORCID,Peters Stefan1,Guerin Gregory R.2,McGrath Andrew3,Keppel Gunnar14ORCID

Affiliation:

1. UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia

2. School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia

3. Airborne Research Australia, Parafield, SA 5106, Australia

4. AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France

Abstract

A disjunct population of red stringybark (Eucalyptus macrorhyncha) trees in South Australia is experiencing increasing amounts of dieback. Because the population is considered vulnerable to extinction, we investigated spatiotemporal vegetation changes, quantified the extent of dieback, and determined how topography influences dieback using aerial and satellite imagery. Classification of vegetation health status using hyperspectral aerial imagery indicated that 37% (accuracy = 0.87 Kappa) of the population was unhealthy and potentially experiencing dieback. When correlating this classification with a digital terrain model (DTM), the aspect and amount of solar radiation had the strongest relationship with the presence of unhealthy vegetation. PlanetScope satellite-derived, and spectral index-based analysis indicated that 7% of the red stringybark population experienced negative vegetation health changes during a five-year period (2017–2022), with positive vegetation health changes (9.5%) noted on pole-facing slopes. Therefore, our integrated remote sensing approach documented the extent and spatiotemporal dynamics of dieback, suggesting it could be applied in other studies. Topographical aspects exposed to high-solar radiation were particularly vulnerable to dieback, and pole-facing aspects demonstrated some recovery between droughts. The influence of topography and maps of vegetation health can be used to guide future management and restoration of the population.

Funder

Airborne Research Australia

Montpellier Advanced Knowledge Institute on Transitions

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3