Affiliation:
1. Department of Exercise Science, High Point University, High Point, NC 27268, USA
2. Department of Chemistry, High Point University, High Point, NC 27268, USA
Abstract
Population data have shown an association between higher circulating branched-chain amino acids (BCAA) and the severity of insulin resistance in people with diabetes. While several studies have assessed BCAA metabolism as a potential target for regulation, less attention has been paid to the role of L-type amino acid transporter 1 (LAT1), the primary transporter of BCAA in skeletal muscle. The aim of this study was to assess the impact of JPH203 (JPH), a LAT1 inhibitor, on myotube metabolism in both insulin-sensitive and insulin-resistant myotubes. C2C12 myotubes were treated with or without 1 μM or 2 μM JPH for 24 h with or without insulin resistance. Western blot and qRT-PCR were used to assess protein content and gene expression, respectively. Mitochondrial and glycolytic metabolism were measured via Seahorse Assay, and fluorescent staining was used to measure mitochondrial content. BCAA media content was quantified using liquid chromatography–mass spectrometry. JPH at 1 μM (but not 2 μM) increased mitochondrial metabolism and content without inducing changes in mRNA expression of transcripts associated with mitochondrial biogenesis or mitochondrial dynamics. Along with increased mitochondrial function, 1μM treatment also reduced extracellular leucine and valine. JPH at 2 μM reduced pAkt signaling and increased extracellular accumulation of isoleucine without inducing changes in BCAA metabolic genes. Collectively, JPH may increase mitochondrial function independent of the mitochondrial biogenic transcription pathway; however, high doses may reduce insulin signaling.
Funder
Department of Exercise Science within the Congdon School of Health Sciences
High Point University Undergraduate Research and Creative Works Small Project Support
Congdon School of Health Sciences Summer Undergraduate Research Fellowship
HPU Natural Science Fellows Program
Shimadzu Partnership for Academics, Research and Quality of Life (SPARQ) Program
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献