Prediction of a Large-Scale Database of Collision Cross-Section and Retention Time Using Machine Learning to Reduce False Positive Annotations in Untargeted Metabolomics

Author:

Lenski Marie12ORCID,Maallem Saïd1,Zarcone Gianni1ORCID,Garçon Guillaume1ORCID,Lo-Guidice Jean-Marc1,Anthérieu Sébastien1ORCID,Allorge Delphine12

Affiliation:

1. ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé humaine, CHU Lille, Institut Pasteur de Lille, Université de Lille, F-59000 Lille, France

2. CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France

Abstract

Metabolite identification in untargeted metabolomics is complex, with the risk of false positive annotations. This work aims to use machine learning to successively predict the retention time (Rt) and the collision cross-section (CCS) of an open-access database to accelerate the interpretation of metabolomic results. Standards of metabolites were tested using liquid chromatography coupled with high-resolution mass spectrometry. In CCSBase and QSRR predictor machine learning models, experimental results were used to generate predicted CCS and Rt of the Human Metabolome Database. From 542 standards, 266 and 301 compounds were detected in positive and negative electrospray ionization mode, respectively, corresponding to 380 different metabolites. CCS and Rt were then predicted using machine learning tools for almost 114,000 metabolites. R2 score of the linear regression between predicted and measured data achieved 0.938 and 0.898 for CCS and Rt, respectively, demonstrating the models’ reliability. A CCS and Rt index filter of mean error ± 2 standard deviations could remove most misidentifications. Its application to data generated from a toxicology study on tobacco cigarettes reduced hits by 76%. Regarding the volume of data produced by metabolomics, the practical workflow provided allows for the implementation of valuable large-scale databases to improve the biological interpretation of metabolomics data.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference50 articles.

1. What Is Metabolomics All About?;Roessner;BioTechniques,2009

2. Metabolomics Enables Precision Medicine: “A White Paper, Community Perspective”;Beger;Metabolomics Off. J. Metabolomic Soc.,2016

3. Trifonova, O.P., Maslov, D.L., Balashova, E.E., and Lokhov, P.G. (2023). Current State and Future Perspectives on Personalized Metabolomics. Metabolites, 13.

4. Ma, X. (2022). Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules, 27.

5. High-Resolution Mass Spectrometry: Theoretical and Technological Aspects;Zarrouk;Toxicol. Anal. Clin.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3