Comparative Study of sEMG Feature Evaluation Methods Based on the Hand Gesture Classification Performance

Author:

Hellara Hiba12ORCID,Barioul Rim1ORCID,Sahnoun Salwa2,Fakhfakh Ahmed2ORCID,Kanoun Olfa1ORCID

Affiliation:

1. Professorship for Measurements and Sensor Technology, Chemnitz University of Technology, Rechenhainer Straße 70, 09126 Chemnitz, Germany

2. Laboratory of Signals, Systems, Artificial Intelligence and Networks, Digital Research Centre of Sfax, National School of Electronics and Telecommunications of Sfax, University of Sfax, Technopole of Sfax, Sfax 3021, Tunisia

Abstract

Effective feature extraction and selection are crucial for the accurate classification and prediction of hand gestures based on electromyographic signals. In this paper, we systematically compare six filter and wrapper feature evaluation methods and investigate their respective impacts on the accuracy of gesture recognition. The investigation is based on several benchmark datasets and one real hand gesture dataset, including 15 hand force exercises collected from 14 healthy subjects using eight commercial sEMG sensors. A total of 37 time- and frequency-domain features were extracted from each sEMG channel. The benchmark dataset revealed that the minimum Redundancy Maximum Relevance (mRMR) feature evaluation method had the poorest performance, resulting in a decrease in classification accuracy. However, the RFE method demonstrated the potential to enhance classification accuracy across most of the datasets. It selected a feature subset comprising 65 features, which led to an accuracy of 97.14%. The Mutual Information (MI) method selected 200 features to reach an accuracy of 97.38%. The Feature Importance (FI) method reached a higher accuracy of 97.62% but selected 140 features. Further investigations have shown that selecting 65 and 75 features with the RFE methods led to an identical accuracy of 97.14%. A thorough examination of the selected features revealed the potential for three additional features from three specific sensors to enhance the classification accuracy to 97.38%. These results highlight the significance of employing an appropriate feature selection method to significantly reduce the number of necessary features while maintaining classification accuracy. They also underscore the necessity for further analysis and refinement to achieve optimal solutions.

Funder

Deutsche Forschungsgemeinschaft

Chemnitz University of Technology

German Academic Exchange Service

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3