Genetic and Genomic Tools in Sunflower Breeding for Broomrape Resistance

Author:

Cvejić Sandra,Radanović Aleksandra,Dedić Boško,Jocković MilanORCID,Jocić Siniša,Miladinović DraganaORCID

Abstract

Broomrape is a root parasitic plant causing yield losses in sunflower production. Since sunflower is an important oil crop, the development of broomrape-resistant hybrids is the prime breeding objective. Using conventional plant breeding methods, breeders have identified resistant genes and developed a number of hybrids resistant to broomrape, adapted to different growing regions worldwide. However, the spread of broomrape into new countries and the development of new and more virulent races have been noted intensively. Recent advances in sunflower genomics provide additional tools for plant breeders to improve resistance and find durable solutions for broomrape spread and virulence. This review describes the structure and distribution of new, virulent physiological broomrape races, sources of resistance for introduction into susceptible cultivated sunflower, qualitative and quantitative resistance genes along with gene pyramiding and marker assisted selection (MAS) strategies applied in the process of increasing sunflower resistance. In addition, it presents an overview of underutilized biotechnological tools, such as phenotyping, -omics, and genome editing techniques, which need to be introduced in the study of sunflower resistance to broomrape in order to achieve durable resistance.

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Reference100 articles.

1. EVALUATION OF SUNFLOWER HYBRIDS IN MULTI-ENVIRONMENT TRIAL (MET)

2. Increased virulence in sunflower broomrape (Orobanche cumana Wallr.) populations from Southern Spain is associated with greater genetic diversity;Martín-Sanz;Front. Plant Sci.,2016

3. Sunflower broomrape (Orobanche cumana Wallr.);Fernández-Martínez,2015

4. Sunflower breeding;Škorić,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3