Abstract
A few studies have been conducted recently in order to improve the aerodynamic performance of Darrieus vertical-axis wind turbines with straight blades (H-type VAWTs). The blade pitch angle control is proposed to enhance the performance of H-type VAWTs. This paper aims to investigate the performance of an H-type VAWT in terms of its power output and self-starting capability using an intelligent blade pitch control strategy based on a multi-layer perceptron artificial neural network (MLP-ANN) method. The performance of the proposed blade pitch controller is investigated by adding a conventional controller (PID) to the MLP-ANN controller (i.e., a hybrid controller). The dynamics of an H-type VAWT is mathematically modeled in a nonlinear state space for the stability analysis in the sense of Lyapunov. The effectiveness of the proposed pitch control system is validated by building an H-type VAWT prototype model that is extensively tested outdoors under different conditions for both fixed and variable pitch angle configurations. Results demonstrated that the blade-pitching technique enhanced the power output of an H-type VAWT by approximately 22%. The hybrid controller that used a high percentage of the MLP-ANN controller achieved a better control performance by reducing the overshoot of the control response at high rotor speeds.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献