Abstract
This paper shows an elaboration of an equivalent electrical circuit of a Dual Active Bridge (DAB) and its application as a versatile tool for steady-states analysis in wide range of operating conditions. This work analyses the converter which is controlled with a coherently defined Triple Phase-Shift (TPS) modulation which allows appropriate switching functions to be written, thus enabling the circuit’s state-space equations to be derived. Due to this approach, a Fourier series expansion may be easily applied to utilize Generalized Averaged Modeling (GAM)—a convenient method for modeling resonant and quasi-resonant power converters. Moreover, this paper shows the utilization of the GAM model higher harmonics’ complex magnitudes to calculate the steady-state power characteristics for bidirectional operation; additionally, a method for a particular state variable waveform signal reconstruction is presented. All the discussed model properites are validated with a 1.5 kW 100 kHz SiC-based DAB prototype.
Funder
Studies were funded by ENERGYTECH-1 project granted by Warsaw University of Technology under the program Excellence Initiative: Research University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献