Comparison of Corrosion Behavior of T91, 9Cr and 9CrAl ODS Steels in Liquid Pb

Author:

Chen Lingzhi1,Xu Shuai2,Schroer Carsten3ORCID,Jia Haodong4,Ruan Zhangshun1,Qin Bo1,Zhou Zhangjian4,Long Bin1

Affiliation:

1. Institute of Reactor Engineering Technology, China Institute of Atomic Energy, Beijing 102413, China

2. School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China

3. Institute for Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology (KIT), 76344 Karlsruhe, Germany

4. School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

It is important to improve the liquid lead corrosion resistance of fuel cladding alloy for promoting the development of lead-based reactors. The corrosion behaviors of traditional T91 steel and similar oxide dispersion strengthen ODS-type steels with or without the addition of Al, and were examined and compared at 600 °C in static oxygen-controlled liquid Pb in this research. High-temperature liquid lead corrosion tests were carried out for 120 h, 240 h, 500 h, 1000 h, and 2000 h, respectively, for three prepared samples. After the experiment, the corrosion behavior was evaluated and compared mainly based on the aspects of appearance, corrosion depth, microstructure, and composition difference. It was found that just the ODS design did not show a positive effect on corrosion resistance, while the addition of Al is beneficial to improving the corrosion resistance of ODS steel. The maximum corrosion depth of 9CrAl ODS is only 51.8 μm after corrosion for 2000 h, which is much lower than that of 9Cr-ODS steel. A thin film containing Al/Cr formed in the corrosion area after adding Al in 9Cr ODS steel, which played a positive role in corrosion resistance.

Funder

Research on Engineering Technology of Megawatt Lead Bismuth Reactor Nuclear Power Supply

Continuous Basic Scientific Research Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3