Alumina-Doped Silica Aerogels for High-Temperature Thermal Insulation

Author:

Wu Yu,Wang XiaodongORCID,Liu Lin,Zhang Ze,Shen Jun

Abstract

In this study, we used two methods to prepare alumina-doped silica aerogels with the aim of increasing the thermal stability of silica aerogels. The first method was physical doping of α-Al2O3 nano powders, and the second method was to create a chemical compound via the co-precursor of TEOS and AlCl3·6H2O in different proportions. The shrinkage, chemical composition, and specific surface area (SSA) of samples after heating at different temperatures were analyzed. Our results show that the silicon hydroxyl groups of samples derived from AlCl3·6H2O gradually decreased and nearly disappeared after heating at 800 °C, which indicates the complete dehydration of the silicon hydroxyl. Thus, the samples exhibited a large linear shrinkage and decreased SSA after high-temperature heat treatment. By contrast, samples doped with α-Al2O3 powders retained abundant silicon hydroxyl groups, and the 6.1 wt.% α-Al2O3-doped sample exhibited the lowest linear shrinkage of 11% and the highest SSA of 1056 m2/g after heat treatment at 800 °C. The alumina-doped silica aerogels prepared using a simple and low-price synthesized method pave the way for the low-cost and large-scale production of high-temperature thermal insulation.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3