Unraveling How Antimicrobial Lipid Mixtures Disrupt Virus-Mimicking Lipid Vesicles: A QCM-D Study

Author:

Moon Suji1,Sut Tun Naw1ORCID,Yoon Bo Kyeong2,Jackman Joshua A.1ORCID

Affiliation:

1. School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea

2. School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea

Abstract

Single-chain lipid amphiphiles such as fatty acids and monoglycerides are promising antimicrobial alternatives to replace industrial surfactants for membrane-enveloped pathogen inhibition. Biomimetic lipid membrane platforms in combination with label-free biosensing techniques offer a promising route to compare the membrane-disruptive properties of different fatty acids and monoglycerides individually and within mixtures. Until recently, most related studies have utilized planar model membrane platforms, and there is an outstanding need to investigate how antimicrobial lipid mixtures disrupt curved model membrane platforms such as intact vesicle adlayers that are within the size range of membrane-enveloped virus particles. This need is especially evident because certain surfactants that completely disrupt planar/low-curvature membranes are appreciably less active against high-curvature membranes. Herein, we conducted quartz crystal microbalance–dissipation (QCM-D) measurements to investigate the membrane-disruptive properties of glycerol monolaurate (GML) monoglyceride and lauric acid (LA) fatty acid mixtures to rupture high-curvature, ~75 nm diameter lipid vesicle adlayers. We identified that the vesicle rupture activity of GML/LA mixtures mainly occurred above the respective critical micelle concentration (CMC) of each mixture, and that 25/75 mol% GML/LA micelles exhibited the greatest degree of vesicle rupture activity with ~100% efficiency that exceeded the rupture activity of other tested mixtures, individual compounds, and past reported values with industrial surfactants. Importantly, 25/75 GML/LA micelles outperformed 50/50 GML/LA micelles, which were previously reported to have the greatest membrane-disruptive activity towards planar model membranes. We discuss the mechanistic principles behind how antimicrobial lipid engineering can influence membrane-disruptive activity in terms of optimizing the balance between competitive membrane remodeling processes and inducing anisotropic vs. isotropic spontaneous curvature in lipid membrane systems.

Funder

Korea government

Ministry of Education

Chonnam National University

Sungkyunkwan University

National Research Foundation, Prime Minister’s Office, Singapore

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3