YOLO-DRS: A Bioinspired Object Detection Algorithm for Remote Sensing Images Incorporating a Multi-Scale Efficient Lightweight Attention Mechanism

Author:

Liao Huan1ORCID,Zhu Wenqiu1

Affiliation:

1. School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China

Abstract

Bioinspired object detection in remotely sensed images plays an important role in a variety of fields. Due to the small size of the target, complex background information, and multi-scale remote sensing images, the generalized YOLOv5 detection framework is unable to obtain good detection results. In order to deal with this issue, we proposed YOLO-DRS, a bioinspired object detection algorithm for remote sensing images incorporating a multi-scale efficient lightweight attention mechanism. First, we proposed LEC, a lightweight multi-scale module for efficient attention mechanisms. The fusion of multi-scale feature information allows the LEC module to completely improve the model’s ability to extract multi-scale targets and recognize more targets. Then, we propose a transposed convolutional upsampling alternative to the original nearest-neighbor interpolation algorithm. Transposed convolutional upsampling has the potential to greatly reduce the loss of feature information by learning the feature information dynamically, thereby reducing problems such as missed detections and false detections of small targets by the model. Our proposed YOLO-DRS algorithm exhibits significant improvements over the original YOLOv5s. Specifically, it achieves a 2.3% increase in precision (P), a 3.2% increase in recall (R), and a 2.5% increase in mAP@0.5. Notably, the introduction of the LEC module and transposed convolutional results in a respective improvement of 2.2% and 2.1% in mAP@0.5. In addition, YOLO-DRS only increased the GFLOPs by 0.2. In comparison to the state-of-the-art algorithms, namely YOLOv8s and YOLOv7-tiny, YOLO-DRS demonstrates significant improvements in the mAP@0.5 metrics, with enhancements ranging from 1.8% to 7.3%. It is fully proved that our YOLO-DRS can reduce the missed and false detection problems of remote sensing target detection.

Funder

Natural Science Foundation of Hunan Province

Open Platform Innovation Foundation of the Education Department of Hunan

National Key Research and Development Program (NKRDP) projects

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Reference44 articles.

1. Surface-to-air missile sites detection agent with remote sensing images;Liu;Sci. China Inf. Sci.,2021

2. Zhang, Y., Ning, G., Chen, S., and Yang, Y. (2021). Impact of rapid urban sprawl on the local meteorological observational environment based on remote sensing images and GIS technology. Remote Sens., 13.

3. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors);Friedman;Ann. Stat.,2000

4. Platt, J.C. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, Microsoft.

5. Dalal, N., and Triggs, B. (2005, January 20–25). Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3