Multicolor Hair Dyeing with Biocompatible Dark Polyphenol Complex-Integrated Shampoo with Reactive Oxygen Species Scavenging Activity

Author:

Kim Tae Min1,Won Hyun Jeong1,Yang Jun-Ho2,Jo Hayeon1,Kim A Hyeon3,Nam Dohyun2,Kim Seul Gi1,Jin Eun-Jung2ORCID,Bae Heung Jin4,Park Sung Young13ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea

2. Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Republic of Korea

3. Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea

4. MODAMODA Corporation, Ltd., Songpa-gu, Seoul 05546, Republic of Korea

Abstract

Hair dyeing has become a prevalent lifestyle trend, especially within the fashion industry. However, it possesses disadvantages, such as containing carcinogenic and toxic materials. In this study, we developed a biocompatible hair-dyeing technology using a shampoo with a dark polyphenol complex (DPC), referred to as S-DPC. The DPC was formed from a mixture of gallic acid and [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexol and used to enhance both the stability of the hair coating and its ability to scavenge reactive oxygen species (ROS). Colloidal DPC particles play a pivotal role in the coating process of various hair dyes, ensuring the uniform coloring of human hair through intermolecular interactions such as hydrogen bonding. Owing to the effect of a polyphenol complex on hair coating, we observed improved antistatic performance and enhanced mechanical strength, resulting in a substantial increase in elongation at the breaking point from 33.74% to 48.85%. The multicolor S-DPC exhibited antioxidant properties, as indicated by its ROS-scavenging ability, including 2,2-diphenyl-1-picrylhydrazyl inhibition (87–89%), superoxide radical scavenging (84–87%), and hydroxyl radical scavenging (95–98%). Moreover, the in vitro analysis of the DPC revealed nearly 100% cell viability in live and dead assays, highlighting the remarkable biocompatibility of the DPC. Therefore, considering its effectiveness and safety, this biomaterial has considerable potential for applications in hair dyeing.

Funder

Korean Government

Korea National University of Transportation Industry-Academy Cooperation Foundation

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3