A Systematic Review of Human Amnion Enhanced Cartilage Regeneration in Full-Thickness Cartilage Defects

Author:

Abd Halim Nur Farah Anis1,Ab Aziz Atiqah1,Tan Sik-Loo1,Selvaratnam Veenesh2ORCID,Kamarul Tunku1ORCID

Affiliation:

1. Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia

2. Joint Reconstruction Unit (JRU), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia

Abstract

Cartilage defects present a significant challenge in orthopedic medicine, often leading to pain and functional impairment. To address this, human amnion, a naturally derived biomaterial, has gained attention for its potential in enhancing cartilage regeneration. This systematic review aims to evaluate the efficacy of human amnion in enhancing cartilage regeneration for full-thickness cartilage defects. An electronic search was conducted on MEDLINE-PubMed, Web of Science (WoS), and the Scopus database up to 27 December 2023 from 2007. A total of 401 articles were identified. After removing 125 duplicates and excluding 271 articles based on predetermined criteria, only 5 articles remained eligible for inclusion in this systematic review. All five eligible articles conducted in vivo studies utilizing rabbits as subjects. Furthermore, analysis of the literature reveals an increasing trend in the frequency of utilizing human amnion for the treatment of cartilage defects. Various forms of human amnion were utilized either alone or seeded with cells prior to implantation. Histological assessments and macroscopic observations indicated usage of human amnion improved cartilage repair outcomes. All studies highlighted the positive results despite using different forms of amnion tissues. This systematic review underscores the promising role of human amnion as a viable option for enhancing cartilage regeneration in full-thickness cartilage defects, thus offering valuable insights for future research and clinical applications in orthopedic tissue engineering.

Funder

Ministry of Higher Education Malaysia via Prototype Research

UM International Collaboration Grant—2023 SATU Joint Research Scheme Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3