Research Progress on Low-Surface-Energy Antifouling Coatings for Ship Hulls: A Review

Author:

Cao Zhimin1,Cao Pan2

Affiliation:

1. Institute of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou 215104, China

2. College of mechanical Engineering, Yangzhou University, Yangzhou 225127, China

Abstract

The adhesion of marine-fouling organisms to ships significantly increases the hull surface resistance and expedites hull material corrosion. This review delves into the marine biofouling mechanism on marine material surfaces, analyzing the fouling organism adhesion process on hull surfaces and common desorption methods. It highlights the crucial role played by surface energy in antifouling and drag reduction on hulls. The paper primarily concentrates on low-surface-energy antifouling coatings, such as organic silicon and organic fluorine, for ship hull antifouling and drag reduction. Furthermore, it explores the antifouling mechanisms of silicon-based and fluorine-based low-surface-energy antifouling coatings, elucidating their respective advantages and limitations in real-world applications. This review also investigates the antifouling effectiveness of bionic microstructures based on the self-cleaning abilities of natural organisms. It provides a thorough analysis of antifouling and drag reduction theories and preparation methods linked to marine organism surface microstructures, while also clarifying the relationship between microstructure surface antifouling and surface hydrophobicity. Furthermore, it reviews the impact of antibacterial agents, especially antibacterial peptides, on fouling organisms’ adhesion to substrate surfaces and compares the differing effects of surface structure and substances on ship surface antifouling. The paper outlines the potential applications and future directions for low-surface-energy antifouling coating technology.

Funder

the General Program for Basic Science Research (Natural Science) in Higher Education Institu-tions of Jiangsu Province

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3